Revista de Teledetección (Nov 2020)

Obtención de coberturas del suelo agropecuarias en imágenes satelitales Sentinel-2 con la inyección de imágenes de dron usando Random Forest en Google Earth Engine

  • M. Ramírez,
  • L. Martínez,
  • M. Montilla,
  • O. Sarmiento,
  • J. Lasso,
  • S. Díaz

DOI
https://doi.org/10.4995/raet.2020.14102
Journal volume & issue
Vol. 0, no. 56
pp. 49 – 68

Abstract

Read online

Para obtener información precisa sobre los cambios de la cubierta terrestre en el sector agrícola, proponemos un método de clasificación supervisada que integra las imágenes del satélite Sentinel-2 con las imágenes obtenidas de los Sistemas de Aeronaves Pilotadas a Distancia (RPAS, por sus siglas en inglés). La metodología se aplicó en la plataforma de Google Earth Engine. Inicialmente, la colección de imágenes de Sentinel-2 se integró en una sola imagen mediante un proceso de reducción de mediana. Posteriormente, se aplicó el método de fusión de imágenes de pansharpening con filtro de paso alto (HPF, por sus siglas en inglés) a las bandas espectrales térmicas para obtener una resolución espacial final de 10 m. Para realizar la integración de las dos fuentes de imágenes, la imagen del RPAS se normalizó utilizando un filtro de textura gaussiano de 5×5 y el píxel se re-muestreó a cinco veces su tamaño original. Este procedimiento se realizó de forma iterativa hasta alcanzar la resolución espacial de la imagen del Sentinel-2. Además, se añadieron a la clasificación los siguientes datos: los índices espectrales, calculados a partir de las bandas de Sentinel-2 y RPAS (por ejemplo, NDVI, NDWI, SIPI, GARI), la información altimétrica y las pendientes de la zona derivadas del MED SRTM. La clasificación supervisada se realizó utilizando la técnica de Random Forest (Machine Learning). La referencia de la semilla de la cubierta terrestre para realizar la clasificación fue capturada manualmente por un experto temático, luego, esta referencia fue distribuida en un 70% para el entrenamiento del algoritmo de Random Forest y en un 30% para validar la clasificación. Los resultados muestran que la incorporación de la imagen RPAS mejora los indicadores de precisión temática en un promedio del 3% en comparación con una clasificación realizada exclusivamente con imágenes de Sentinel-2.

Keywords