Physical Review Special Topics. Accelerators and Beams (May 2012)
Hybrid TE-TM scheme for time domain numerical calculations of wakefields in structures with walls of finite conductivity
Abstract
In particle accelerators a preferred direction, the direction of motion, is well defined. If in a numerical calculation the (numerical) dispersion in this direction is suppressed, a quite coarse mesh and moderate computational resources can be used to reach accurate results even for extremely short electron bunches. Several approaches have been proposed in the past decades to reduce the accumulated dispersion error in wakefield calculations for perfectly conducting structures. In this paper we extend the TE/TM splitting algorithm to a new hybrid scheme that allows for wakefield calculations in structures with walls of finite conductivity. The conductive boundary is modeled by one-dimensional wires connected to each boundary cell. A good agreement of the numerical simulations with analytical results and other numerical approaches is obtained.