Sensors (Mar 2023)

Predicting the Output of Solar Photovoltaic Panels in the Absence of Weather Data Using Only the Power Output of the Neighbouring Sites

  • Heon Jeong

DOI
https://doi.org/10.3390/s23073399
Journal volume & issue
Vol. 23, no. 7
p. 3399

Abstract

Read online

There is an increasing need for capable models in the forecast of the output of solar photovoltaic panels. These models are vital for optimizing the performance and maintenance of PV systems. There is also a shortage of studies on forecasts of the output power of solar photovoltaics sites in the absence of meteorological data. Unlike common methods, this study explores numerous machine learning algorithms for forecasting the output of solar photovoltaic panels in the absence of weather data such as temperature, humidity and wind speed, which are often used when forecasting the output of solar PV panels. The considered models include Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN) and Transformer. These models were used with the data collected from 50 different solar photo voltaic sites in South Korea, which consist of readings of the output of each of the sites collected at regular intervals. This study focuses on obtaining multistep forecasts for the multi-in multi-out, multi-in uni-out and uni-in uni-out settings. Detailed experimentation was carried out in each of these settings. Finally, for each of these settings and different lookback and forecast lengths, the best models were also identified.

Keywords