Genome Biology (May 2019)

OSCA: a tool for omic-data-based complex trait analysis

  • Futao Zhang,
  • Wenhan Chen,
  • Zhihong Zhu,
  • Qian Zhang,
  • Marta F. Nabais,
  • Ting Qi,
  • Ian J. Deary,
  • Naomi R. Wray,
  • Peter M. Visscher,
  • Allan F. McRae,
  • Jian Yang

DOI
https://doi.org/10.1186/s13059-019-1718-z
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 13

Abstract

Read online

Abstract The rapid increase of omic data has greatly facilitated the investigation of associations between omic profiles such as DNA methylation (DNAm) and complex traits in large cohorts. Here, we propose a mixed-linear-model-based method called MOMENT that tests for association between a DNAm probe and trait with all other distal probes fitted in multiple random-effect components to account for unobserved confounders. We demonstrate by simulations that MOMENT shows a lower false positive rate and more robustness than existing methods. MOMENT has been implemented in a versatile software package called OSCA together with a number of other implementations for omic-data-based analyses.