Metabolites (Apr 2023)
Optimization of Ultrasonic-Assisted Extraction of α-Glucosidase Inhibitors from <i>Dryopteris crassirhizoma</i> Using Artificial Neural Network and Response Surface Methodology
Abstract
Dryopteris crassirhizoma Nakai is a plant with significant medicinal properties, such as anticancer, antioxidant, and anti-inflammatory activities, making it an attractive research target. Our study describes the isolation of major metabolites from D. crassirhizoma, and their inhibitory activities on α-glucosidase were evaluated for the first time. The results revealed that nortrisflavaspidic acid ABB (2) is the most potent α-glucosidase inhibitor, with an IC50 of 34.0 ± 0.14 μM. In addition, artificial neural network (ANN) and response surface methodology (RSM) were used in this study to optimize the extraction conditions and evaluate the independent and interactive effects of ultrasonic-assisted extraction parameters. The optimal extraction conditions are extraction time of 103.03 min, sonication power of 342.69 W, and solvent-to-material ratio of 94.00 mL/g. The agreement between the predicted models of ANN and RSM and the experimental values was notably high, with a percentage of 97.51% and 97.15%, respectively, indicating that both models have the potential to be utilized for optimizing the industrial extraction process of active metabolites from D. crassirhizoma. Our results could provide relevant information for producing high-quality extracts from D. crassirhizoma for functional foods, nutraceuticals, and pharmaceutical industries.
Keywords