Frontiers in Bioscience-Landmark (Nov 2023)
Advances in Bacterial Oligosaccharyltransferase Structure Elucidation and Potential Application to Glycoconjugate Vaccine Design
Abstract
Glycosylation is one of the most common post-translational modifications of proteins across all kingdoms of life. Diverse monosaccharides and polysaccharides can be attached to a range of amino acid residues generating N-glycosylation, O-glycosylation, C-glycosylation, S-glycosylation, as well as P-glycosylation. The functions of the eukaryotic glycosylation system during protein folding in the endoplasmic reticulum (ER) and Golgi are well-studied. Increasing evidence in the recent decade has demonstrated the presence of oligosaccharyltransferases (OSTs) in bacteria and archaea. In particular, the oligosaccharyltransferase (PglB) of Campylobacter jejuni and oligosaccharyltransferase (PglL) enzyme of Neisseria meningitidis are the most characterized OSTs that catalyze bacterial N-linked glycosylation and O-linked glycosylation, respectively. Glycoprotein administered as glycoconjugate vaccines have been shown to be effective prophylactic to protect against numerous pathogenic bacteria. The chemical synthesis of glycoproteins is complex and expensive, which limits its application to the development of glycoconjugate vaccines. However, studies have demonstrated that the biosynthesis of glycoproteins is realizable by transferring PglB, a plasmid encoding a substrate protein, or PglL, a plasmid encoding genes for glycan synthesis to Escherichia coli. This strategy can be applied to the development of glycoconjugate vaccines using engineered host E. coli. This review summarizes the structure and mechanism of action of the bacterial OSTs, PglB and PglL, and discusses their potential application to glycoconjugate vaccine design.
Keywords