Large-area growth of synaptic heterostructure arrays for integrated neuromorphic visual perception chips
Yao Deng,
Shenghong Liu,
Manshi Li,
Na Zhang,
Yiming Feng,
Junbo Han,
Yury Kapitonov,
Yuan Li,
Tianyou Zhai
Affiliations
Yao Deng
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Shenghong Liu
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Manshi Li
Wuhan National High Magnetic Field Centre, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Na Zhang
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Yiming Feng
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Corresponding authors.
Junbo Han
Wuhan National High Magnetic Field Centre, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Yury Kapitonov
Department of Photonics, Saint Petersburg State University, Saint Petersburg 199034, Russia
Yuan Li
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China; Corresponding authors.
Tianyou Zhai
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China; Corresponding authors.
Two-dimensional metal chalcogenides have garnered significant attention as promising candidates for novel neuromorphic synaptic devices due to their exceptional structural and optoelectronic properties. However, achieving large-scale integration and practical applications of synaptic chips has proven to be challenging due to significant hurdles in materials preparation and the absence of effective nanofabrication techniques. In a recent breakthrough, we introduced a revolutionary allopatric defect-modulated Fe7S8@MoS2 synaptic heterostructure, which demonstrated remarkable optoelectronic synaptic response capabilities. Building upon this achievement, our current study takes a step further by presenting a sulfurization-seeding synergetic growth strategy, enabling the large-scale and arrayed preparation of Fe7S8@MoS2 heterostructures. Moreover, a three-dimensional vertical integration technique was developed for the fabrication of arrayed optoelectronic synaptic chips. Notably, we have successfully simulated the visual persistence function of the human eye with the adoption of the arrayed chip. Our synaptic devices exhibit a remarkable ability to replicate the preprocessing functions of the human visual system, resulting in significantly improved noise reduction and image recognition efficiency. This study might mark an important milestone in advancing the field of optoelectronic synaptic devices, which significantly prompts the development of mature integrated visual perception chips.