Overexpression of a Ramie (<i>Boehmaeria nivea</i> L. Gaud) Group I <i>WRKY</i> Gene, <i>BnWRKY49</i>, Increases Drought Resistance in A<i>rabidopsis thaliana</i>
Yaning Bao,
Yifei Zou,
Xia An,
Yiwen Liao,
Lunjin Dai,
Lijun Liu,
Dingxiang Peng,
Xing Huang,
Bo Wang
Affiliations
Yaning Bao
Guizhou Key Laboratory for Tobacco Quality Research, College of Tobacco Science, Guizhou University, Guiyang 550025, China
Yifei Zou
Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
Xia An
Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
Yiwen Liao
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Lunjin Dai
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Lijun Liu
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Dingxiang Peng
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Xing Huang
Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
Bo Wang
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Plants face multiple stresses in their natural habitats. WRKY transcription factors (TFs) play an important regulatory role in plant stress signaling, regulating the expression of multiple stress-related genes to improve plant stress resistance. In this study, we analyzed the expression profiles of 25 BnWRKY genes in three stages of ramie growth (the seedling stage, the rapid-growth stage, and the fiber maturity stage) and response to abiotic stress through qRT-PCR. The results indicated that 25 BnWRKY genes play a role in different growth stages of ramie and were induced by salt and drought stress in the root and leaf. We selected BnWRKY49 as a candidate gene for overexpression in Arabidopsis. BnWRKY49 was localized in the nucleus. Overexpression of BnWRKY49 affected root elongation under drought and salt stress at the Arabidopsis seedling stage and exhibited increased tolerance to drought stress. Further research found that BnWRKY49-overexpressing lines showed decreased stomatal size and increased cuticular wax deposition under drought compared with wild type (WT). Antioxidant enzyme activities of SOD, POD, and CAT were higher in the BnWRKY49-overexpressing lines than the WT. These findings suggested that the BnWRKY49 gene played an important role in drought stress tolerance in Arabidopsis and laid the foundation for further research on the functional analysis of the BnWRKYs in ramie.