Journal of Food Quality (Jan 2020)
Predictive Growth Modeling of Listeria monocytogenes in Rice Balls and Its Risk Assessment
Abstract
This study aimed to investigate the growth of Listeria monocytogenes in rice balls and to conduct its microbial risk assessment based on the Korean dietary pattern. Each tuna or ham rice ball was mixed with mayonnaise, soy sauce, or gochujang, a Korean traditional fermented red peeper paste, which was artificially contaminated with L. monocytogenes and then stored at 7°C–25°C to assess bacterial growth. Growth data were analyzed using three primary models (the Huang, Baranyi, and Gompertz models), and the growth pattern was found to fit well to the Baranyi model based on the following five statistical criteria: root mean square error (0.38–0.56), Akaike’s information criterion (−51.55–−26.99), coefficient of determination (0.72–0.97), bias factor (0.97–1.01), and accuracy factor (1.06–1.18). The effects of temperature on bacterial growth rate and lag time were evaluated using the square root model. The minimum growth temperature for L. monocytogenes in tuna or ham rice balls was the lowest when they were mixed with mayonnaise (−9.44°C or −15.37°C, respectively). Risk assessment using FDA-iRISK showed that tuna or ham rice balls mixed with gochujang exhibited the highest microbial risk among all the rice balls tested, regardless of the storage temperature. Tuna or ham rice balls mixed with gochujang had the highest disability-adjusted life years per year (0.015) followed by ham rice balls mixed with soy sauce (0.011–0.015) or mayonnaise (0.006–0.015) and then tuna rice balls mixed with soy sauce (0.006–0.008) or mayonnaise (<0.001). In conclusion, our results, determined using predictive growth models, allow the assessment of potential risk ranking associated with the consumption of rice balls contaminated with L. monocytogenes based on the number of illnesses experienced per serving and the disease burden.