IEEE Access (Jan 2022)
Energy-Aware Virtual Machine Allocation in DVFS-Enabled Cloud Data Centers
Abstract
Energy management is considered the major concern in cloud computing, which supports the rapid growth of data centers and computing centers; therefore, energy and load balancing have become crucial issues in cloud data centers. To address this issue, the present paper proposed a two-phase energy-aware load balancing (EALB) scheduling algorithm using the virtual machine migration through the Particle Swarm Optimization (PSO) algorithm to be applicable to dynamic voltage frequency scaling-enabled cloud data centers, which is called EALBPSO. In the first phase, an objective function was employed to deactivate a large number of physical machines in order to reduce energy consumption. The main idea of the algorithm was to maximize load balancing in the second phase, in which the remaining virtual and physical machines were used as the PSO inputs, and an objective function was also defined to distribute the load appropriately among the physical machines. In addition, a dataset was developed to test different parameters and scenarios with the aim of assessing the effectiveness of the proposed EALBPSO algorithm in comparison with other algorithms already proposed in the literature for similar purposes. The experimental results demonstrated that the proposed algorithm was capable of saving up to 0.896%, 9.716%, and 10.8% energy compared with the MDPSO algorithm, Kumar et al.’s algorithm, and Dahsti and Rahmani algorithm, respectively, and also it showed 5.91%, 16%, and 16.267% improvements for the number of virtual machines migrations, and 3.867%, 8.623%, and 6.953% improvements for the deviation of processors, all compared with their competitors stated above, respectively.
Keywords