Proceedings (Oct 2018)
Recent Design Optimization Methods for Energy-Efficient Electric Motors and Derived Requirements for a New Improved Method—Part 1
Abstract
Energy-efficient electric motors are gathering an increased attention since they are used in electric cars or to reduce operational costs, for instance. Due to their high efficiency, permanent-magnet synchronous motors are used progressively more. However, the need to use rare-earth magnets for such high-efficiency motors is problematic not only in regard to the cost but also in socio-political and environmental aspects. Therefore, an increasing effort has to be put in finding the best design possible. The goals to achieve are, among others, to reduce the amount of rare-earth magnet material but also to increase the efficiency. In the first part of this multipart paper, characteristics of optimization problems in engineering and general methods to solve them are presented. In part two, different approaches to the design optimization problem of electric motors are highlighted. The last part will evaluate the different categories of optimization methods with respect to the criteria: degrees of freedom, computing time and the required user experience. As will be seen, there is a conflict of objectives regarding the criteria mentioned above. Requirements, which a new optimization method has to fulfil in order to solve the conflict of objectives will be presented in this last paper.
Keywords