Remote Sensing (Sep 2018)
Evaluation of Manning’s n Roughness Coefficient in Arid Environments by Using SAR Backscatter
Abstract
The prediction of arid region flash floods (magnitude and frequency) is essential to ensure the safety of human life and infrastructures and is commonly based on hydrological models. Traditionally, catchment characteristics are extracted using point-based measurements. A considerable improvement of point-based observations is offered by remote sensing technologies, which enables the determination of continuous spatial hydrological parameters and variables, such as surface roughness, which significantly influence runoff velocity and depth. Hydrological models commonly express the surface roughness using Manning’s roughness coefficient (n) as a key variable. The objectives were thus to determine surface roughness by exploiting a new high spatial resolution spaceborne synthetic aperture radar (SAR) technology and to examine the correlation between radar backscatter and Manning’s roughness coefficient in an arid environment. A very strong correlation (R2 = 0.97) was found between the constellation of small satellites for Mediterranean basin observation (COSMO)-SkyMed SAR backscatter and surface roughness. The results of this research demonstrate the feasibility of using an X-band spaceborne sensor with high spatial resolution for the evaluation of surface roughness in flat arid environments. The innovative method proposed to evaluate Manning’s n roughness coefficient in arid environments with sparse vegetation cover using radar backscatter may lead to improvements in the performance of hydrological models.
Keywords