IEEE Access (Jan 2024)
New Quantum Codes and (<italic>θ</italic>, <italic>δ</italic>, <italic>β</italic>)-Cyclic Codes
Abstract
For a prime p and a positive integer e, let $\mathbb {F}_{p^{e}}$ be the finite field of order $p^{e}$ and $\mathfrak {R}_{\ell } $ be a non-chain ring given by $\mathfrak {R}_{\ell } :=\mathbb {F}_{p^{e}}[v]/\langle v^{\ell } -1\rangle,~\ell \gt 1$ . This study presents the $(\theta _{1},\delta _{1},\beta _{1})$ -cyclic codes over $\mathfrak {R}_{\ell } $ and $(\theta _{i},\delta _{i},\beta _{i})$ -cyclic codes over $\mathbb {F}_{p^{e}}\mathfrak {R}_{\ell } $ for $i=0,1$ . Further, we study the application of these codes in the construction of quantum codes. Towards this, we define a Gray map to find images of the elements of $\mathfrak {R}_{\ell } $ and $\mathbb {F}_{p^{e}}\mathfrak {R}_{\ell } $ over the copies of $\mathbb {F}_{p^{e}}$ , and then establish the dual-containing conditions for these codes. Finally, using the CSS construction and a propagation rule, we find many non-binary quantum and classical codes with better parameters.
Keywords