Sensors (Dec 2020)
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception
Abstract
A non-destructive measuring technique was applied to test major vine geometric traits on measurements collected by a contactless sensor. Three-dimensional optical sensors have evolved over the past decade, and these advancements may be useful in improving phenomics technologies for other crops, such as woody perennials. Red, green and blue-depth (RGB-D) cameras, namely Microsoft Kinect, have a significant influence on recent computer vision and robotics research. In this experiment an adaptable mobile platform was used for the acquisition of depth images for the non-destructive assessment of branch volume (pruning weight) and related to grape yield in vineyard crops. Vineyard yield prediction provides useful insights about the anticipated yield to the winegrower, guiding strategic decisions to accomplish optimal quantity and efficiency, and supporting the winegrower with decision-making. A Kinect v2 system on-board to an on-ground electric vehicle was capable of producing precise 3D point clouds of vine rows under six different management cropping systems. The generated models demonstrated strong consistency between 3D images and vine structures from the actual physical parameters when average values were calculated. Correlations of Kinect branch volume with pruning weight (dry biomass) resulted in high coefficients of determination (R2 = 0.80). In the study of vineyard yield correlations, the measured volume was found to have a good power law relationship (R2 = 0.87). However due to low capability of most depth cameras to properly build 3-D shapes of small details the results for each treatment when calculated separately were not consistent. Nonetheless, Kinect v2 has a tremendous potential as a 3D sensor in agricultural applications for proximal sensing operations, benefiting from its high frame rate, low price in comparison with other depth cameras, and high robustness.
Keywords