Genetic Control of Reproductive Traits under Different Temperature Regimes in Inbred Line Populations Derived from Crosses between <i>S. pimpinellifolium</i> and <i>S. lycopersicum</i> Accessions
Maria Jose Gonzalo,
Luciano Carlos da Maia,
Inmaculada Nájera,
Carlos Baixauli,
Giovanni Giuliano,
Paola Ferrante,
Antonio Granell,
Maria Jose Asins,
Antonio Jose Monforte
Affiliations
Maria Jose Gonzalo
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
Luciano Carlos da Maia
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
Inmaculada Nájera
Centro de Experiencias de Cajamar en Paiporta, 46200 Paiporta, Spain
Carlos Baixauli
Centro de Experiencias de Cajamar en Paiporta, 46200 Paiporta, Spain
Giovanni Giuliano
Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
Paola Ferrante
Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
Antonio Granell
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
Maria Jose Asins
Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera, Km 4.5, Moncada, 46113 Valencia, Spain
Antonio Jose Monforte
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
In the present work, we study the genetic control of reproductive traits under different heat stress conditions in two populations of inbred lines derived from crosses between two S. pimpinellifolium accessions and two tomato cultivars (E9×L5 and E6203×LA1589). The temperature increase affected the reproductive traits, especially at extremely high temperatures, where only a few lines were able to set fruits. Even though a relative modest number of QTLs was identified, two clusters of QTLs involved in the responses of reproductive traits to heat stress were detected in both populations on chromosomes 1 and 2. Interestingly, several epistatic interactions were detected in the E9×L5 population, which were classified into three classes based on the allelic interaction: dominant (one locus suppressed the allelic effects of a second locus), co-adaptive (the double-homozygous alleles from the same parent alleles showed a higher phenotypic value than the combination of homozygous alleles from alternative parents) and transgressive (the combination of double-homozygous alleles from different parents showed better performance than double-homozygous alleles from the same parents). These results reinforce the important role of non-additive genetic variance in the response to heat stress and the potential of the new allelic combinations that arise after wide crosses.