Open Chemistry (Mar 2024)
Computational design and in vitro assay of lantadene-based novel inhibitors of NS3 protease of dengue virus
Abstract
Dengue virus (DENV) infection is one of the diseases for which no drug is available for the treatment. The DENV NS2B-NS3 protease is considered to be the prime target for anti-dengue drug development because of its importance in the development of new virus subunits via DENV poly-protein breakdown. Pentacyclic triterpenoids (Lantadenes) from the weed Lantana camara L. and its semi-synthetic congeners have shown a wide array of biological activities in the last two decades. The virtual screening strategy was used on the library of 78 natural and semi-synthetic lantadenes to predict the potent antagonists for the NS2B-NS3 protease enzyme of DENV and their experimental validation by in vitro assay of lead molecules. In the in silico analysis of 78 triterpenoids, two lead molecules (−10.60 and −9.93 kcal/mol) were predicted to be inhibitors of protease (viral) when compared to its reference ligand 1,8-dihydroxy-4,5-dinitroanthraquinone (−5.377 kcal/mol). At the same time, binding affinity, pharmacokinetic, and toxicity profiling, along with molecular dynamics simulations, were studied. The in vitro viral infection inhibition assay inferred that lead molecule 62 exhibited a 60% and 45% reduction in DENV titers at 10 and 5 µM concentrations, respectively. The lead molecule 62 can further be optimized for its pharmacophore and has the potential to be developed as a drug-like molecule.
Keywords