Heliyon (Apr 2023)
Therapeutic potentials of Adenostemma lavenia (L.) O.Kuntze evidenced into an array of pharmacological effects and ligand-receptor interactions
Abstract
This study constructed the phytochemical profiles of Adenostemma lavenia (L) methanol extract (MEAL) and investigated its anti-nociceptive, anti-diarrheal, antipyretic, thrombolytic and anthelmintic effects. The GC-MS characterized MEAL had undergone an in vivo antipyretic effect assayed on Swiss albino mice adopting the yeast-induced pyrexia model, antinociceptive activity tested following acetic acid-induced writhing and formalin-induced licking paw models, anti-diarrheal effect in castor oil-induced diarrhea, castor oil-induced enteropooling, and charcoal-induced intestinal transit tests, in vitro thrombolytic effect using clot-lysis model and anthelmintic effects assayed on Tubifex tubifex nematode. The MEAL biometabolites and associated proteins of target diseases were interacted with computational analysis. The MEAL showed a significant dose-dependent percentage of inhibition in acetic acid-induced writhing and formalin-induced paw licking displaying inhibition of 80.40% in acetic acid-induced writhing and 36.23% and 58.21% in the second phase of the formalin-induced model. The MEAL inhibition of 34.37%, 35.29%, and 42.95% in castor oil-induced diarrhea, castor oil-induced enteropooling, and charcoal-induced gastrointestinal motility, respectively. The MEAL significantly reduced yeast-induced pyrexia. Its biometabolites showed remarkable (−4.1 kcal/mol to 7.4 kcal/mol) binding affinity with the protein receptors. Caryophyllene and Cyclobarbital yielded the best binding scores in this research. Results suggest that pure compounds-based pharmacological investigations are necessary to affirm the therapeutic effects.