International Journal of Computational Intelligence Systems (Jan 2016)

Hyperrectangles Selection for Monotonic Classification by Using Evolutionary Algorithms

  • Javier García,
  • Adnan M. AlBar,
  • Naif R. Aljohani,
  • José-Ramón Cano,
  • Salvador García

DOI
https://doi.org/10.1080/18756891.2016.1146536
Journal volume & issue
Vol. 9, no. 1

Abstract

Read online

In supervised learning, some real problems require the response attribute to represent ordinal values that should increase with some of the explaining attributes. They are called classification problems with monotonicity constraints. Hyperrectangles can be viewed as storing objects in ℝn which can be used to learn concepts combining instance-based classification with the axis-parallel rectangle mainly used in rule induction systems. This hybrid paradigm is known as nested generalized exemplar learning. In this paper, we propose the selection of the most effective hyperrectangles by means of evolutionary algorithms to tackle monotonic classification. The model proposed is compared through an exhaustive experimental analysis involving a large number of data sets coming from real classification and regression problems. The results reported show that our evolutionary proposal outperforms other instance-based and rule learning models, such as OLM, OSDL, k-NN and MID; in accuracy and mean absolute error, requiring a fewer number of hyperrectangles.

Keywords