BMC Gastroenterology (Apr 2020)
25(OH) D3 alleviate liver NK cytotoxicity in acute but not in chronic fibrosis model of BALB/c mice due to modulations in vitamin D receptor
Abstract
Abstract Background Low 25-Hydroxy-vitamin-D; “25(OH)-D3” serum and vitamin D receptor (VDR) levels were recently correlated to advanced fibrosis. However, VDR mechanism in liver fibrosis modulations is not well understood. In this study, we aimed to evaluate changes in liver NK cells cytotoxicity due to modulations in VDR in CCl4 fibrosis model following 25(OH) D3 injections. Methods Carbon-tetrachloride (CCl4) hepatic-fibrosis was induced in BALB/c mice for 1 and 4 weeks as an acute and chronic fibrosis model, respectively. Along 1th to 4th weeks, vitamin D were i.p injected/2x week. Liver were assessed histologically and for proteins quantification for VDR and αSMA expressions. In vitro, potential killing of NK cells were evaluated following co-culture with primary-hepatic-stellate-cells (pHSCs) obtained from BALB/c WT-mice. Results Systemic inflammation and hepatic-fibrosis increased along 4 weeks of CCl4 as indicated by serum ALT and αSMA expressions (P < 0.02) as well as histological assessments, respectively. These results were associated with increased NK1.1 activations and hypercalcemia. While vitamin D administrations delayed fibrosis of early stages, vitamin D worsen hepatic-fibrosis of late stages of CCl4. In week 4, no further activations of NK cells were seen following vitamin D injections and were associated with down-expressions of VDR (1.7 Fold, P < 0.004) indicating the inability of vitamin D to ameliorate hepatic fibrosis. In vitro, NK cells from the chronic model of CCl4 did not affect pHSCs killing and fail to reduce fibrosis. Conclusion Vitamin D alleviate liver NK cytotoxicity in acute but not in chronic fibrosis model due to modulations in vitamin D receptor and calcium. Hypercalcemia associated with late fibrosis may inhibited VDR levels, however, may not explain the profibrogenic effects of vitamin D.
Keywords