Cellular Physiology and Biochemistry (Nov 2016)

Expression of MicroRNA-301a and its Functional Roles in Malignant Melanoma

  • Lei Cui,
  • Yuejun Li,
  • Xiaoxing Lv,
  • Jinqing Li,
  • Xiaolin Wang,
  • Zhanjun Lei,
  • Xueyong Li

DOI
https://doi.org/10.1159/000452540
Journal volume & issue
Vol. 40, no. 1-2
pp. 230 – 244

Abstract

Read online

Background/Aims: Although microRNA-301a has been reported to function as an oncogene in many human cancers, the roles of miR-301a in malignant melanoma (MM) is unclear. The present study aims to investigate the functional roles of miR-301a in MM and its possible molecular mechanisms. Methods: Quantitative real-time PCR (qRT-PCR) assay was performed to detect the expression of miR-301a in MM tissues, and analyze its correlation with metastasis and prognosis of MM patients. In vitro, miR-301a was ectopically expressed using overexpression and knock-down strategies, and the effects of miR-301a expression on growth, apoptosis, migration, invasion and chemosensitivity of MM cells were further investigated. Furthermore, the potential and functional target gene was identified by luciferase reporter, qRT-PCR, Western blot assays. Results: We showed that the expression of miR-301a was significantly upregulated in MM tissues, and upregulation of miR-301a correlated with metastasis and poor prognosis of MM patients. Transfection of miR-301a/inhibitor significantly inhibited growth, colony formation, migration, invasion and enhanced apoptosis and chemosensitivity in MM cells, while transfection of miR-301a/mimic could induce the inverse effects on phenotypes of MM cells. Luciferase reporter, qRT-PCR and Western blot assays showed that phosphatase and tensin homolog (PTEN) was a direct and functional target of miR-301a. It was also observed that the Akt and FAK signaling pathways were involved in miR-301/PTEN-promoting MM progression. Conclusion: Taken together, our study suggests that miR-301a may be used as a potential therapeutic target in the treatment of human MM.

Keywords