Remote Sensing (Sep 2021)

Investigation of Antarctic Precipitable Water Vapor Variability and Trend from 18 Year (2001 to 2018) Data of Four Reanalyses Based on Radiosonde and GNSS Observations

  • Zhixiang Mo,
  • Zhaoliang Zeng,
  • Liangke Huang,
  • Lilong Liu,
  • Ling Huang,
  • Lv Zhou,
  • Chao Ren,
  • Hongchang He

DOI
https://doi.org/10.3390/rs13193901
Journal volume & issue
Vol. 13, no. 19
p. 3901

Abstract

Read online

Precipitable water vapor (PWV) plays a vital role in climate research, especially for Antarctica in which meteorological observations are insufficient due to the adverse climate and topography therein. Reanalysis data sets provide a great opportunity for Antarctic water vapor research. This study investigates the climatological PWV means, variability and trends over Antarctica from four reanalyses, including the fifth generation of European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5), the Second Modern-Era Retrospective analysis for Research and Applications (MERRA-2), Japanese 55-year Reanalysis (JRA-55) and National Centers for Environmental Prediction/Department of Energy (NCEP/DOE), in the period of 2001–2018 based on radiosonde and GNSS observations. PWV data from the ERA5, MERRA-2, JRA-55 and NCEP/DOE have been evaluated by radiosonde and GNSS observations, showing that ERA5 and MERRA-2 perform better than JRA-55 and NCEP/DOE with mean root mean square (RMS) errors below 1.2 mm. The climatological PWV mean distribution over Antarctica roughly shows a decreasing trend from west to east, with the highest content in summer and the lowest content in winter. The PWV variability is generally small over Antarctica, showing a seasonal dependence that is larger in the cold season and smaller in the warm season. PWV trends for all reanalyses at most Antarctic regions are insignificant and most reanalyses present overall drying trends from 2001 to 2018, except for ERA5 exhibiting a moistening trend. PWV trends also show seasonal and regional dependence. All reanalyses are generally consistent with radiosonde and GNSS observations in reproducing the PWV means (mean differences within 1.1 mm), variability (mean differences within 3%) and trends (mean differences within 6.4% decade−1) over Antarctica, except for NCEP/DOE showing spurious variability and trends in East Antarctica. Results can help us further understand these four reanalysis PWV products and promote climate research in Antarctica.

Keywords