PLoS ONE (May 2010)

The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments.

  • Paul J Janssen,
  • Rob Van Houdt,
  • Hugo Moors,
  • Pieter Monsieurs,
  • Nicolas Morin,
  • Arlette Michaux,
  • Mohammed A Benotmane,
  • Natalie Leys,
  • Tatiana Vallaeys,
  • Alla Lapidus,
  • Sébastien Monchy,
  • Claudine Médigue,
  • Safiyh Taghavi,
  • Sean McCorkle,
  • John Dunn,
  • Daniël van der Lelie,
  • Max Mergeay

DOI
https://doi.org/10.1371/journal.pone.0010433
Journal volume & issue
Vol. 5, no. 5
p. e10433

Abstract

Read online

Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.