Membranes (Sep 2022)

Theoretical and Experimental Study of the Effect of Plasma Characteristics on the Mechanical Properties of Ihram Cotton Fabric

  • Ahmed Rida Galaly,
  • Nagia Dawood

DOI
https://doi.org/10.3390/membranes12090879
Journal volume & issue
Vol. 12, no. 9
p. 879

Abstract

Read online

Theoretical and experimental investigations of the radial distribution function of the electron temperature (RDFT), for the abnormal glow region in a low-density plasma fluid and weakly ionized argon gas, are provided. The final proved equation of RDFT agrees with the experimental data for different low pressures ranging from 0.2 to 1.2 torr, confirming that the electron temperatures decrease with an increasing product of radial distance (R) and gas pressures (P). A comparison of the two configurations: R>L and L>R, for the axial distance (L), from the tip of the single probe to the cathode electrode, and the cathode electrode radius (R), shows that, in both cases, the generated plasma temperatures decrease, and densities increase. The RDFT accurately depicts a dramatic decrease for L R. This indicates that, when L R>L>R. These characteristics included resiliency, strain hardening, tensile strength, elongation percentage, yield strength, ultimate tensile strength, toughness, and fracture (breaking) point. Furthermore, the mechanism parameters of plasma interaction with textile membrane will be discussed, such as: process mechanism, interaction, and gas type.

Keywords