International Journal of Molecular Sciences (Nov 2021)

Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations

  • Jingjuan Zhang,
  • Maoyun She,
  • Rongchang Yang,
  • Yanjie Jiang,
  • Yebo Qin,
  • Shengnan Zhai,
  • Sadegh Balotf,
  • Yun Zhao,
  • Masood Anwar,
  • Zaid Alhabbar,
  • Angéla Juhász,
  • Jiansheng Chen,
  • Hang Liu,
  • Qier Liu,
  • Ting Zheng,
  • Fan Yang,
  • Junkang Rong,
  • Kefei Chen,
  • Meiqin Lu,
  • Shahidul Islam,
  • Wujun Ma

DOI
https://doi.org/10.3390/ijms222111934
Journal volume & issue
Vol. 22, no. 21
p. 11934

Abstract

Read online

In the present study, four large-scale field trials using two doubled haploid wheat populations were conducted in different environments for two years. Grain protein content (GPC) and 21 other yield-related traits were investigated. A total of 227 QTL were mapped on 18 chromosomes, which formed 35 QTL clusters. The potential candidate genes underlying the QTL clusters were suggested. Furthermore, adding to the significant correlations between yield and its related traits, correlation variations were clearly shown within the QTL clusters. The QTL clusters with consistently positive correlations were suggested to be directly utilized in wheat breeding, including 1B.2, 2A.2, 2B (4.9–16.5 Mb), 2B.3, 3B (68.9–214.5 Mb), 4A.2, 4B.2, 4D, 5A.1, 5A.2, 5B.1, and 5D. The QTL clusters with negative alignments between traits may also have potential value for yield or GPC improvement in specific environments, including 1A.1, 2B.1, 1B.3, 5A.3, 5B.2 (612.1–613.6 Mb), 7A.1, 7A.2, 7B.1, and 7B.2. One GPC QTL (5B.2: 671.3–672.9 Mb) contributed by cultivar Spitfire was positively associated with nitrogen use efficiency or grain protein yield and is highly recommended for breeding use. Another GPC QTL without negatively pleiotropic effects on 2A (50.0–56.3 Mb), 2D, 4D, and 6B is suggested for quality wheat breeding.

Keywords