Nature Environment and Pollution Technology (Sep 2023)

An Attempt to Reduce the Electrocoagulation Costs and to Ensure the Reuse of Treated Aqueous Dye Solution

  • D. Jovitha Jane, M. S. Asath Murphy, Riju S Robin, S Sahaya Leenus, Jegathambal Palanichamy and Parameswari Kalivel

DOI
https://doi.org/10.46488/NEPT.2023.v22i03.015
Journal volume & issue
Vol. 22, no. 3
pp. 1277 – 1288

Abstract

Read online

In most of the research works, similar metal electrodes were used, resulting in high operating costs, and the reuse of the treated water was not explored. The major goal of this research is to lower the cost of the electrocoagulation (EC) process by employing electrodes made of different metals and to investigate whether it is possible to reuse the water that has been treated by doing so. It was done to optimize the operational parameters such as pH, voltage, time, electrolyte, and dye concentrations. The energy and electrode consumption was calculated as 0.29 kWh.m-3 and 3.5×10-2 kg.m-3, respectively. The HPLC and LC-MS studies shows the degradation of dye and the formation of intermediary compounds, which were less toxic. The sludge obtained from the EC process was subjected to EDX and XPS analysis to know the composition of metals and the formation of metal hydroxide coagulants. The phytotoxicity of the treated water after EC was examined using Trigonella foenum-graecum seeds. The results showed an utmost color removal efficiency (CRE%) and COD removal of 99.78% and 92.86% with an operating cost of US$ 0.028, which is comparatively 98.12% lower than the other conventional electrodes. The treated toxicity test of water was comparable to the toxicity test of tap water.

Keywords