Notch signaling generates the “cut here line” on the cuticle of the puparium in Drosophila melanogaster
Reiko Tajiri,
Ayaka Hirano,
Yu-ya Kaibara,
Daiki Tezuka,
Zhengyang Chen,
Tetsuya Kojima
Affiliations
Reiko Tajiri
Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
Ayaka Hirano
Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
Yu-ya Kaibara
Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
Daiki Tezuka
Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
Zhengyang Chen
Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
Tetsuya Kojima
Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan; Corresponding author
Summary: During a molt or eclosion, insects shed their cuticle, an extracellular matrix made by underlying epidermal cells, by cleavage along a defined line. This means that the “cut here line” is pre-formed on the cuticle, and its formation is indispensable for insect life. Here, we show that the proper formation of the operculum ridge (OR), which is the “cut here line” on the puparium (pupal case) of Drosophila melanogaster, involves Notch signaling activation in the epidermal cells just beneath the future OR region (OR-forming cells). The inhibition of Notch signaling causes defects in eclosion due to failure in OR cleavage, the chitin organization and several cuticular proteins localization, glucose dehydrogenase (Gld) activity, and OR-forming cell shape. Our findings provide the first insight into the molecular basis of the structure and formation of the “cut here line” on the cuticle.