PLoS ONE (Jan 2016)

Depletion of Regulatory T Cells Induces High Numbers of Dendritic Cells and Unmasks a Subset of Anti-Tumour CD8+CD11c+ PD-1lo Effector T Cells.

  • Nicolas Goudin,
  • Pascal Chappert,
  • Jérome Mégret,
  • David-Alexandre Gross,
  • Benedita Rocha,
  • Orly Azogui

DOI
https://doi.org/10.1371/journal.pone.0157822
Journal volume & issue
Vol. 11, no. 6
p. e0157822

Abstract

Read online

Natural regulatory T (Treg) cells interfere with multiple functions, which are crucial for the development of strong anti-tumour responses. In a model of 4T1 mammary carcinoma, depletion of CD25+Tregs results in tumour regression in Balb/c mice, but the mechanisms underlying this process are not fully understood. Here, we show that partial Treg depletion leads to the generation of a particular effector CD8 T cell subset expressing CD11c and low level of PD-1 in tumour draining lymph nodes. These cells have the capacity to migrate into the tumour, to kill DCs, and to locally regulate the anti-tumour response. These events are concordant with a substantial increase in CD11b+ resident dendritic cells (DCs) subsets in draining lymph nodes followed by CD8+ DCs. These results indicate that Treg depletion leads to tumour regression by unmasking an increase of DC subsets as a part of a program that optimizes the microenvironment by orchestrating the activation, amplification, and migration of high numbers of fully differentiated CD8+CD11c+PD1lo effector T cells to the tumour sites. They also indicate that a critical pattern of DC subsets correlates with the evolution of the anti-tumour response and provide a template for Treg depletion and DC-based therapy.