International Journal of Hyperthermia (Jan 2021)
The effects of endurance exercise combined with high-temperature head-out water immersion on serum concentration of brain-derived neurotrophic factor in healthy young men
Abstract
Objectives To evaluate acute changes in serum brain-derived neurotrophic factor (BDNF) concentration following combined endurance exercise and heat stress through head-out water immersion (HOI). Setting Observational study with crossover design. Methods Ten healthy young male participants performed HOI at 40 °C (40 °C HOI) or continuous cycling at 60% of maximal oxygen uptake while immersed in 40 °C (40 °C HOI-ex) or 23 °C water (23 °C HOI-ex) for 15 min. Serum BDNF, cortisol and lactate concentrations, and core temperature (Tcore) were measured pre, immediately post, and 15 and 30 min post-immersion. Results BDNF concentration increased immediately and 15 min after 40 °C HOI-ex, but not after 40 °C or 23 °C HOI-ex. No changes in Tcore concentration were observed during 23 °C HOI-ex (Pre; 37.3 °C ± 0.3 °C, Post; 37.8 °C ± 0.2 °C, Post 15; 37.4 °C ± 0.3 °C, Post 30; 37.2 °C ± 0.2 °C). Tcore increased significantly post, post 15, and post 30 min of 40 °C HOI (Pre; 37.1 °C ± 0.4 °C, Post; 38.8 °C ± 0.5 °C, Post 15; 37.9 °C ± 0.4 °C, Post 30; 37.9 °C ± 0.2 °C) and 40 °C HOI-ex (Pre; 37.2 °C ± 0.2 °C, Post; 40.2 °C ± 0.7 °C, Post 15; 38.9 °C ± 0.5 °C, Post 30; 38.3 °C ± 0.5 °C). Tcore was higher in 40 °C HOI-ex compared with 40 °C HOI and 23 °C HOI-ex immediately post and post 15 min. Plasma lactate and cortisol were significantly higher in 40 °C HOI-ex compared with 40 °C HOI and 23 °C HOI-ex after immersion (p = 0.001). Conclusion While 15 min HOI alone or thermoneutral exercise do not increase BDNF concentration, both combined may form a time-efficient strategy to acutely elevate BDNF.
Keywords