Therapeutic Advances in Respiratory Disease (Jan 2020)

Airway wall thickness and airflow limitations in asthma assessed in quantitative computed tomography

  • Mateusz Patyk,
  • Andrzej Obojski,
  • Dąbrówka Sokołowska-Dąbek,
  • Martyna Parkitna-Patyk,
  • Urszula Zaleska-Dorobisz

DOI
https://doi.org/10.1177/1753466619898598
Journal volume & issue
Vol. 14

Abstract

Read online

Background: Asthma is a frequent chronic disease of the airways. In spite of the fact that symptoms of asthma are well known, the pathogenesis has not yet been fully understood. Quantitative computed tomography (qCT) of the lung allows for the measurment of a set of parameters. The aim of this study was to evaluate the usefulness of quantitative computed tomography in the assessment of airway wall thickness in asthma. Methods: The prospective study was performed on a group of 83 patients with well-defined, long-term asthma between 2016 and 2018. The control group was composed of 30 healthy volunteers. All examined subjects were non-smokers. All computed tomography (CT) studies were performed using a 128 multi-slice CT scanner with no contrast, following a chest scanning protocol in the supine position, at full inspiration and breath-holds. Results: Quantitative bronchial tree measurements were obtained from the third up to the ninth generation of the posterior basal bronchi (B10) of the right lung in a blinded fashion. The value of the wall thickness in patients with asthma was significantly higher in all measured generations of the bronchial tree (third to ninth generation). The lumen area and the inner diameter significantly correlated with the lung function tests and were substantially smaller in the examined group from the seventh to the ninth generation of the bronchi ( p < 0.05). Conclusions: We conclude that airway remodelling occurs in most patients with long-term asthma and is associated mainly with the medium and small airways. Imaging techniques, especially qCT can be useful in the diagnosis and management of asthma. The reviews of this paper are available via the supplemental material section.