Frontiers in Neural Circuits (Aug 2022)

Data-Driven Network Dynamical Model of Rat Brains During Acute Ictogenesis

  • Victor Hugo Batista Tsukahara,
  • Jordão Natal de Oliveira Júnior,
  • Vitor Bruno de Oliveira Barth,
  • Jasiara Carla de Oliveira,
  • Vinicius Rosa Cota,
  • Carlos Dias Maciel

DOI
https://doi.org/10.3389/fncir.2022.747910
Journal volume & issue
Vol. 16

Abstract

Read online

Epilepsy is one of the most common neurological disorders worldwide. Recent findings suggest that the brain is a complex system composed of a network of neurons, and seizure is considered an emergent property resulting from its interactions. Based on this perspective, network physiology has emerged as a promising approach to explore how brain areas coordinate, synchronize and integrate their dynamics, both under perfect health and critical illness conditions. Therefore, the objective of this paper is to present an application of (Dynamic) Bayesian Networks (DBN) to model Local Field Potentials (LFP) data on rats induced to epileptic seizures based on the number of arcs found using threshold analytics. Results showed that DBN analysis captured the dynamic nature of brain connectivity across ictogenesis and a significant correlation with neurobiology derived from pioneering studies employing techniques of pharmacological manipulation, lesion, and modern optogenetics. The arcs evaluated under the proposed approach achieved consistent results based on previous literature, in addition to demonstrating robustness regarding functional connectivity analysis. Moreover, it provided fascinating and novel insights, such as discontinuity between forelimb clonus and generalized tonic-clonic seizure (GTCS) dynamics. Thus, DBN coupled with threshold analytics may be an excellent tool for investigating brain circuitry and their dynamical interplay, both in homeostasis and dysfunction conditions.

Keywords