Cellular Physiology and Biochemistry (Aug 2016)

Baicalin Attenuates Alcoholic Liver Injury through Modulation of Hepatic Oxidative Stress, Inflammation and Sonic Hedgehog Pathway in Rats

  • Huifen Wang,
  • Yanli Zhang,
  • Ruxue Bai,
  • Miao Wang,
  • Shiyu Du

DOI
https://doi.org/10.1159/000447820
Journal volume & issue
Vol. 39, no. 3
pp. 1129 – 1140

Abstract

Read online

Background/Aims: Lipid accumulation, inflammatory responses and oxidative stress have been implicated in the pathology of alcoholic liver disease (ALD). Targeting inhibition of these features may provide a promising therapeutic strategy for ALD. Baicalin, a flavonoid isolated from Scutellaria baicalensis Georgi, has been shown to exert a hepatoprotective effect. However, its effects on ALD remain obscure. This study was aimed to investigate the effects of baicalin on alcohol-induced liver injury and its related mechanisms. Methods: For in vivo experiments, rats were supplied intragastrical administration of alcohol continuously for 4 or 8 weeks, and then received baicalin treatment in the latter 4 weeks in the presence / absence of alcohol intake. Liver histology and function, inflammatory cytokines, oxidative mediators, and the components of the Sonic hedgehog pathway were evaluated. For in vitro experiments, alcohol-stimulated human normal liver cells LO2 were used. Results: Baicalin treatment significantly alleviated alcoholic liver injury, improved liver function impaired by alcohol, and inhibited hepatocytes apoptosis. In addition, baicalin decreased the expression levels of proinflammatory cytokines TNF-α, IL-1β, IL-6) and malonyldialdehyde (MDA), and increased the activities of antioxidant enzymes SOD and GSH-Px. Furthermore, baicalin modulated the activation of Sonic hedgehog (Shh) pathway. Administration of baicalin upregulated the expression of sonic hedgehog (Shh), patched (Ptc), Smoothened (Smo), and Glioblastoma-1(Gli-1). Blockade of the Shh pathway in cyclopamine abolished the effects of baicalin in vitro. Conclusion: Both in vivo and in vitro experimental results indicate that baicalin exerts hepatoprotective roles in alcohol-induced liver injury through inhibiting oxidative stress, inflammatory response, and the regulation of the Shh pathway.

Keywords