Applied Mathematics and Nonlinear Sciences (Mar 2020)

Fault Diagnosis and Prognosis of Bearing Based on Hidden Markov Model with Multi-Features

  • Zhao Weiguo,
  • Shi Tiancong,
  • Wang Liying

DOI
https://doi.org/10.2478/amns.2020.1.00008
Journal volume & issue
Vol. 5, no. 1
pp. 71 – 84

Abstract

Read online

A new approach to achieve fault diagnosis and prognosis of bearing based on hidden Markov model (HMM) with multi-features is proposed. Firstly, the time domain, frequency domain, and wavelet packet decomposition are utilized to extract the condition features of bearing vibration signals, and the PCA method is merged into multi-features to reduce their dimensionality. Then the low-dimensional features are processed to obtain the scalar probabilities of each bearing condition, which are multiplied to generate the observed values of HMM. The results reveal that the established approach can well diagnose fault conditions and achieve the remaining life estimation of bearing.

Keywords