Scientific Reports (Feb 2024)

Effect of vestibular loss on head-on-trunk stability in individuals with vestibular schwannoma

  • Raabeae Aryan,
  • Omid A. Zobeiri,
  • Jennifer L. Millar,
  • Michael C. Schubert,
  • Kathleen E. Cullen

DOI
https://doi.org/10.1038/s41598-024-53512-3
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract The vestibulo-collic reflex generates neck motor commands to produce head-on-trunk movements that are essential for stabilizing the head relative to space. Here we examined the effects of vestibular loss on head-on-trunk kinematics during voluntary behavior. Head and trunk movements were measured in individuals with vestibular schwannoma before and then 6 weeks after unilateral vestibular deafferentation via surgical resection of the tumor. Movements were recorded in 6 dimensions (i.e., 3 axes of rotation and 3 axes of translation) using small light-weight inertial measurement units while participants performed balance and gait tasks. Kinematic measures differed between individuals with vestibular schwannoma (at both time points) and healthy controls for the more challenging exercises, namely those performed in tandem position or on an unstable surface without visual input. Quantitative assessment of the vestibulo-ocular reflex (VOR) revealed a reduction in VOR gain for individuals with vestibular schwannoma compared to control subjects, that was further reduced following surgery. These findings indicated that the impairment caused by either the tumor or subsequent surgical tumor resection altered head-on-trunk kinematics in a manner that is not normalized by central compensation. In contrast, we further found that head-on-trunk kinematics in individuals with vestibular schwannoma were actually comparable before and after surgery. Thus, taken together, our results indicate that vestibular loss impacts head-on-trunk kinematics during voluntary balance and gait behaviors, and suggest that the neural mechanisms mediating adaptation alter the motion strategies even before surgery in a manner that may be maladaptive for long-term compensation.