Molecules (May 2021)

Rheological and Solubility Properties of Soy Protein Isolate

  • Timothy D. O′Flynn,
  • Sean A. Hogan,
  • David F. M. Daly,
  • James A. O′Mahony,
  • Noel A. McCarthy

DOI
https://doi.org/10.3390/molecules26103015
Journal volume & issue
Vol. 26, no. 10
p. 3015

Abstract

Read online

Soy protein isolate (SPI) powders often have poor water solubility, particularly at pH values close to neutral, which is an attribute that is an issue for its incorporation into complex nutritional systems. Therefore, the objective of this study was to improve SPI solubility while maintaining low viscosity. Thus, the intention was to examine the solubility and rheological properties of a commercial SPI powder at pH values of 2.0, 6.9, and 9.0, and determine if heat treatment at acidic or alkaline conditions might positively influence protein solubility, once re-adjusted back to pH 6.9. Adjusting the pH of SPI dispersions from pH 6.9 to 2.0 or 9.0 led to an increase in protein solubility with a concomitant increase in viscosity at 20 °C. Meanwhile, heat treatment at 90 °C significantly improved the solubility at all pH values and resulted in a decrease in viscosity in samples heated at pH 9.0. All SPI dispersions measured under low-amplitude rheological conditions showed elastic-like behaviour (i.e., G′ > G″), indicating a weak “gel-like” structure at frequencies less than 10 Hz. In summary, the physical properties of SPI can be manipulated through heat treatment under acidic or alkaline conditions when the protein subunits are dissociated, before re-adjusting to pH 6.9.

Keywords