Foods (Jun 2024)
Purification, Characterization, and Anti-Inflammatory Potential of Free and Bound Polyphenols Extracted from <i>Rosa roxburghii</i> Tratt Pomace
Abstract
Rosa roxburghii Tratt pomace (RRTP), an underutilized byproduct, is rich in polyphenol compounds. This study aimed to further explore the purification, characterization, anti-inflammatory activities, and underlying molecular mechanisms of free polyphenols (RRTP-FP) and bound polyphenols (RRTP-BP) from RRTP. The results indicated that AB-8 macroporous resin emerged as the preferred choice for subsequent separation and purification. The purities of purified RRTP-FP (P-RRTP-FP) and purified RRTP-BP (P-RRTP-BP) increased by 103.34% and 66.01%, respectively. Quantitative analysis identified epigallocatechin, epicatechin, and ellagic acid as the main phenolic compounds in P-RRTP-FP. In P-RRTP-BP, the primary phenolic compounds were ellagic acid, epicatechin, and gallic acid. In vitro antioxidant assays demonstrated the superior DPPH and ABTS radical scavenging activities of P-RRTP-FP and P-RRTP-BP compared to vitamin C. Treatment with P-RRTP-FP and P-RRTP-BP reduced nitric oxide (NO) and reactive oxygen species (ROS) production, mitigated the decline in cellular membrane potential, and significantly downregulated the mRNA expression of pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Additionally, P-RRTP-FP and P-RRTP-BP inhibited the phosphorylation of pertinent proteins in the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. This finding suggests potential utility of RRTP-derived polyphenols as anti-inflammatory agents for managing severe inflammatory conditions.
Keywords