International Journal of Agronomy (Jan 2016)

Evaluation of the Effect of Irrigation and Fertilization by Drip Fertigation on Tomato Yield and Water Use Efficiency in Greenhouse

  • Wang Xiukang,
  • Xing Yingying

DOI
https://doi.org/10.1155/2016/3961903
Journal volume & issue
Vol. 2016

Abstract

Read online

The water shortage in China, particularly in Northwest China, is very serious. There is, therefore, great potential for improving the water use efficiency (WUE) in agriculture, particularly in areas where the need for water is greatest. A two-season (2012 and 2013) study evaluated the effects of irrigation and fertilizer rate on tomato (Lycopersicum esculentum Mill., cv. “Jinpeng 10”) growth, yield, and WUE. The fertilizer treatment significantly influenced plant height and stem diameter at 23 and 20 days after transplanting in 2012 and 2013, respectively. As individual factors, irrigation and fertilizer significantly affected the leaf expansion rate, but irrigation × fertilizer had no statistically significant effect on the leaf growth rate at 23 days after transplanting in 2012. Dry biomass accumulation was significantly influenced by fertilizer in both years, but there was no significant difference in irrigation treatment in 2012. Our study showed that an increased irrigation level increased the fruit yield of tomatoes and decreased the WUE. The fruit yield and WUE increased with the increased fertilizer rate. WUE was more sensitive to irrigation than to fertilization. An irrigation amount of 151 to 208 mm and a fertilizer amount of 454 to 461 kg·ha−1 (nitrogen fertilizer, 213.5–217 kg·ha−1; phosphate fertilizer, 106.7–108 kg·ha−1; and potassium fertilizer, 133.4–135.6 kg·ha−1) were recommended for the drip fertigation of tomatoes in greenhouse.