Molecules (Feb 2022)

Storage Stability and In Vitro Bioaccessibility of Liposomal Betacyanins from Red Pitaya (<i>Hylocereus polyrhizus</i>)

  • Xian Lin,
  • Bozhe Li,
  • Jing Wen,
  • Jijun Wu,
  • Daobang Tang,
  • Yuanshan Yu,
  • Yujuan Xu,
  • Baojun Xu

DOI
https://doi.org/10.3390/molecules27041193
Journal volume & issue
Vol. 27, no. 4
p. 1193

Abstract

Read online

In order to address the poor stability of the betacyanins from red pitaya (Hylocereus polyrhizus, HP), which are considered as good sources of natural colorant, liposomal-encapsulation technique was applied in this study. Thin-layer dispersion method was employed to prepare HP betacyacnin liposomes (HPBL). The formulation parameters for HPBL were optimized, and the characteristics, stability, and release profile of HPBL in in vitro gastrointestinal systems were evaluated.Results showed that an HP betacyanin encapsulation efficiency of 93.43 ± 0.11% was obtained after formulation optimization. The HPBL exhibited a narrow size distribution of particle within a nanometer range and a strong electronegative ζ-potential. By liposomal encapsulation, storage stability of HP betacyanin was significantly enhanced in different storage temperatures. When the environmental pH ranged from 4.3–7.0, around 80% of HP betacyanins were preserved on Day 21 with the liposomal protection. The loss of 2,2′-Diphenyl-picrylhydrazyl (DPPH) scavenging activity and color deterioration of HPBL were developed in accordance with the degradation of HP betacyanins during storage. In in vitro gastrointestinal digestion study, with the protection of liposome, the retention rates of HP betacyanins in vitro were enhanced by 14% and 40% for gastric and intestinal digestion, respectively.This study suggested that liposomal encapsulation was an effective approach to stabilize HP betacyanins during storage and gastrointestinal digestion, but further investigations were needed to better optimize the liposomal formulation and understand the complex liposomal system.

Keywords