Crystals (May 2018)

Lattice Correspondence and Growth Structures of Monoclinic Mg4Zn7 Phase Growing on an Icosahedral Quasicrystal

  • Alok Singh,
  • Julian M. Rosalie

DOI
https://doi.org/10.3390/cryst8050194
Journal volume & issue
Vol. 8, no. 5
p. 194

Abstract

Read online

Mg 4 Zn 7 phase, with a monoclinic unit cell, a layered structure and a unique axis showing pseudo-tenfold symmetry, grows over icosahedral quasicrystalline phase in a manner similar to a decagonal quasicrystal. In this study, the relationship of this phase to icosahedral quasicrystal is brought out by a transmission electron microscopy study of Mg 4 Zn 7 phase growing on icosahedral phase in a cast Mg-Zn-Y alloy. Lattice correspondences between the two phases have been determined by electron diffraction. Planes related to icosahedral fivefold and pseudo-twofold symmetry are identified. Possible orthogonal cells bounded by twofold symmetry-related planes have been determined. Mg 4 Zn 7 phase growing on an icosahedral phase exhibits a number of planar faults parallel to the monoclinic axis, presumably to accommodate the quasiperiodicity at the interface. Two faults were identified, which were on {200} and { 2 ¯ 01} planes. Their structures have been determined by high resolution imaging in TEM. They produce two different unit cells at the interface.

Keywords