Tongxin xuebao (Feb 2019)
Deep reinforcement learning based resource allocation algorithm in cellular networks
Abstract
In order to solve multi-objective optimization problem,a resource allocation algorithm based on deep reinforcement learning in cellular networks was proposed.Firstly,deep neural network (DNN) was built to optimize the transmission rate of cellular system and to complete the forward transmission process of the algorithm.Then,the Q-learning mechanism was utilized to construct the error function,which used energy efficiency as the rewards.The gradient descent method was used to train the weights of DNN,and the reverse training process of the algorithm was completed.The simulation results show that the proposed algorithm can determine optimization extent of optimal resource allocation scheme with rapid convergence ability,it is obviously superior to the other algorithms in terms of transmission rate and system energy consumption optimization.