Discrete Mathematics & Theoretical Computer Science (Jan 2009)

Macdonald polynomials at $t=q^k$

  • Jean-Gabriel Luque

DOI
https://doi.org/10.46298/dmtcs.2687
Journal volume & issue
Vol. DMTCS Proceedings vol. AK,..., no. Proceedings

Abstract

Read online

We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$.

Keywords