Scientific Reports (Feb 2024)
Atypical brain lateralization for speech processing at the sublexical level in autistic children revealed by fNIRS
Abstract
Abstract Autistic children often exhibit atypical brain lateralization of language processing, but it is unclear what aspects of language contribute to this phenomenon. This study employed functional near-infrared spectroscopy to measure hemispheric lateralization by estimating hemodynamic responses associated with processing linguistic and non-linguistic auditory stimuli. The study involved a group of autistic children (N = 20, mean age = 5.8 years) and a comparison group of nonautistic peers (N = 20, mean age = 6.5 years). The children were presented with stimuli with systematically decreasing linguistic relevance: naturalistic native speech, meaningless native speech with scrambled word order, nonnative speech, and music. The results revealed that both groups showed left lateralization in the temporal lobe when listening to naturalistic native speech. However, the distinction emerged between autism and nonautistic in terms of processing the linguistic hierarchy. Specifically, the nonautistic comparison group demonstrated a systematic reduction in left lateralization as linguistic relevance decreased. In contrast, the autism group displayed no such pattern and showed no lateralization when listening to scrambled native speech accompanied by enhanced response in the right hemisphere. These results provide evidence of atypical neural specialization for spoken language in preschool- and school-age autistic children and shed new light on the underlying linguistic correlates contributing to such atypicality at the sublexical level.