Polymer assisted deposition of YIG thin films with thickness control for spintronics applications
Rubén Corcuera,
Pilar Jiménez-Cavero,
Rafael Pérez del Real,
Francisco Rivadulla,
Rafael Ramos,
José Ignacio Morales-Aragonés,
Soraya Sangiao,
César Magén,
Luis Morellón,
Irene Lucas
Affiliations
Rubén Corcuera
Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
Pilar Jiménez-Cavero
Centro Universitario de la Defensa, Academia General Militar, 50090 Zaragoza, Spain
Rafael Pérez del Real
Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid, Spain
Francisco Rivadulla
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Rafael Ramos
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
José Ignacio Morales-Aragonés
Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
Soraya Sangiao
Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
César Magén
Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
Luis Morellón
Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
Irene Lucas
Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain
The use of magnetic garnets in new technologies such as spintronic devices requires fine-structured thin films. Classical fabrication techniques for these materials, typically physical vapor deposition methods, lead to excellent magnetic behavior. However, availability and scalability for potential applications are well restricted. In this study, we propose an innovative approach to fabricating Yttrium Iron Garnet thin films with precise thickness control achieved through iterative layer deposition via a chemical synthesis route. Remarkably, the iterative deposition process results in films exhibiting exceptional crystallinity. Magnetic characterization provides saturation magnetization and coercivity values on par with those reported in literature, summed to narrow ferromagnetic resonance lines. Therefore, in this work we demonstrate the viability of polymer assisted deposition as a promising alternative thinking about scalability to conventional deposition techniques for this material. Notably, our findings reveal energy conversion efficiencies comparable to those achieved with materials synthesized via physical vapor deposition methods.