Mathematical and Computational Applications (May 2018)

4D Remeshing Using a Space-Time Finite Element Method for Elastodynamics Problems

  • Serge Dumont,
  • Franck Jourdan,
  • Tarik Madani

DOI
https://doi.org/10.3390/mca23020029
Journal volume & issue
Vol. 23, no. 2
p. 29

Abstract

Read online

In this article, a Space-Time Finite Element Method (STFEM) is proposed for the resolution of mechanical problems involving three dimensions in space and one in time. Special attention will be paid to the non-separation of the space and time variables because this kind of interpolation is well suited to mesh adaptation. For that purpose, we have developed a technique of 4D mesh generation adapted to space-time remeshing. A difficulty arose in the representation of 4D finite elements and meshes. This original technique does not require coarse-to-fine and fine-to-coarse mesh-to-mesh transfer operators and does not increase the size of the linear systems to be solved, compared to traditional finite element methods. Space-time meshes are composed of simplex finite elements. Computations are carried out in the context of the continuous Galerkin method. We have tested the method on a linearized elastodynamics problem. Our technique of mesh adaptation was validated on elementary examples and applied to a problem of mobile loading. The convergence and stability of the method are studied and compared with existing methods. This work is a first implementation of 4D space-time remeshing. A stability criterion for the method is established, as well as a convergence rate of about two. Using simplex elements, it is possible to develop a technique of mesh adaptation able to follow a mobile loading zone.

Keywords