Geofluids (Jan 2021)

Investigation of the Fracturing Effect Induced by the Disturbing Stress of Hydrofracturing Using the Bonded-Particle Model

  • Xin Zhang,
  • Yuqi Zhang,
  • Bingxiang Huang

DOI
https://doi.org/10.1155/2021/9988748
Journal volume & issue
Vol. 2021

Abstract

Read online

Hydraulic fracturing applications have shown a stress disturbance effect during hydraulic fracture propagation, which is often ignored. Using laboratory and discrete element numerical simulation tests, hydraulic fracture propagation under this stress disturbance is systematically studied. The results show that during hydraulic fracturing, the bedding plane is damaged by the stress disturbance, forming a bedding fracture zone (BFZ). The nonlinear fracture characteristics of the formation process of the disturbed fracture zone are revealed, and two indexes (the number of fractures in the disturbed fracture zone and the size of the disturbed fracture zone) are proposed to evaluate the fracturing effect of the stress disturbance. Based on these indexes, multifactor sensitivity tests are conducted under different geological conditions and operational factors. When the principal stress (σ1) difference is large, the number of hydraulic fractures gradually decreases from many to one, and the direction of the hydraulic fractures gradually approaches the vertical direction of σ3, but the change in the in situ stress condition has no obvious effect on the stress disturbance effect. The weaker the bonding strength of the bedding plane, the more significant the stress disturbance effect is, and the easier it is for the fractures to expand along the bedding plane. With increasing injection rate, the stress disturbance effect first increases and then decreases, and the hydraulic fracture propagates from along the bedding plane to cross the bedding plane. With increasing relative distance between the injection hole and bedding plane, the stress disturbance effect presents a linearly increasing trend, and the hydraulic fractures along the bedding planes extend. Based on the experimental results, the relationship between the fracturing effect of the stress disturbance and the extension mode of the hydraulic fracture is determined, and an optimization method for hydraulic fracturing in composite rock reservoirs is given. The research results can provide a theoretical basis for controlling the formation of complex fracture networks in composite rock reservoirs.