Acta Acustica (Jan 2021)
Normal incidence sound insulation provided by Sonic Crystal Acoustic Screens made from rigid scatterers – assessment of different simulation methods
Abstract
Sonic crystal acoustic screens have been in progressive research and development in the last two decades as a technical solution for mitigating traffic noise. Their behaviour is quite different from that observed in classical barriers, with the latter being based on physically blocking the direct sound propagation path (only allowing diffracted noise to reach sensible receivers), and sonic crystals providing attenuation efficiency based on the creation of “band-gaps” at specific frequency ranges, due to the Bragg’s interference phenomenon. The distinct physical mechanisms of these two types of noise barriers complicates the use of classical simplified or even numerical models developed for traditional barriers to simulate and predict the attenuation performance of a sonic crystal, and alternative methods become thus required. In the acoustics scientific literature, several authors have proposed estimation and simulation methods based on different numerical tools to predict the sound insulation provided by these new noise abatement solutions. This paper presents a comparative evaluation of some of these methods, with emphasis on the assessment of their accuracy versus memory usage in order to determine which one is the most suitable for optimization methodologies in the design of new devices with improved acoustic performance.
Keywords