Eu<sup>3+</sup> Complex-Based Superhydrophobic Fluorescence Sensor for Cr(VI) Detection in Water
Wei Ding,
Sravanthi Vallabhuneni,
Jin Liu,
Xinzhi Wang,
Yue Zhao,
Yao Wang,
Qinglin Tang,
Yanxin Wang,
Xiaolin Zhang,
Arun Kumar Kota,
Jianguo Tang
Affiliations
Wei Ding
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Sravanthi Vallabhuneni
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
Jin Liu
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Xinzhi Wang
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Yue Zhao
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Yao Wang
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Qinglin Tang
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Yanxin Wang
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Xiaolin Zhang
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Arun Kumar Kota
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
Jianguo Tang
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
Cr(VI) compounds are bioaccumulative and highly toxic pollutants, and there is a need for simple and fast detection methods to monitor their trace levels. In this work, we developed a Eu3+ complex-based fluorescence sensor to easily detect Cr(VI) in water droplets. Our sensor consists of a nanofibrous membrane electrospun with a blend of polyvinylidene fluoride (PVDF), silica particles, and Eu3+ complex. Upon modifying the membrane surface with fluoroalkyl chemistry, the sensor displayed superhydrophobicity. When a water droplet with Cr(VI) was placed on such a superhydrophobic fluorescence sensor, the overlapping absorption of Cr(VI) and Eu3+ complex facilitated the inner filter effect, allowing the selective detection of Cr(VI) down to 0.44 µM (i.e., 45.76 µg L−1). We proposed and designed of new inexpensive and fast sensor for the detection of Cr(VI).