Electronic Journal of Graph Theory and Applications (Oct 2018)

Domination number of the non-commuting graph of finite groups

  • Ebrahim Vatandoost,
  • Masoumeh Khalili

DOI
https://doi.org/10.5614/ejgta.2018.6.2.3
Journal volume & issue
Vol. 6, no. 2
pp. 228 – 237

Abstract

Read online

Let G be a non-abelian group. The non-commuting graph of group G, shown by ΓG, is a graph with the vertex set G \ Z(G), where Z(G) is the center of group G. Also two distinct vertices of a and b are adjacent whenever ab ≠ ba. A set S ⊆ V(Γ) of vertices in a graph Γ is a dominating set if every vertex v ∈ V(Γ) is an element of S or adjacent to an element of S. The domination number of a graph Γ denoted by γ(Γ), is the minimum size of a dominating set of Γ. </p><p>Here, we study some properties of the non-commuting graph of some finite groups. In this paper, we show that $\gamma(\Gamma_G)&lt;\frac{|G|-|Z(G)|}{2}.$ Also we charactrize all of groups G of order n with t = ∣Z(G)∣, in which $\gamma(\Gamma_{G})+\gamma(\overline{\Gamma}_{G})\in \{n-t+1,n-t,n-t-1,n-t-2\}.$

Keywords