Water (Feb 2019)
Influence of Pre-Hydrolysis on Sewage Treatment in an Up-Flow Anaerobic Sludge BLANKET (UASB) Reactor: A Review
Abstract
The up-flow anaerobic sludge blanket (UASB) process has emerged as a promising high-rate anaerobic digestion technology for the treatment of low- to high-strength soluble and complex wastewaters. Sewage, a complex wastewater, contains 30⁻70% particulate chemical oxygen demand (CODP). These particulate organics degrade at a slower rate than the soluble organics found in sewage. Accumulation of non-degraded suspended solids can lead to a reduction of active biomass in the reactor and hence a deterioration in its performance in terms of acid accumulation and poor biogas production. Hydrolysis of the CODP in sewage prior to UASB reactor will ensure an increased organic loading rate and better UASB performance. While single-stage UASB reactors have been studied extensively, the two-phase full-scale treatment approach (i.e., a hydrolysis unit followed by an UASB reactor) has still not yet been commercialized worldwide. The concept of treating sewage containing particulate organics via a two-phase approach involves first hydrolyzing and acidifying the volatile suspended solids without losing carbon (as methane) in the first reactor and then treating the soluble sewage in the UASB reactor. This work reviews the available literature to outline critical findings related to the treatment of sewage with and without hydrolysis before the UASB reactor.
Keywords