Synthesis of Carbazole–Thiazole Dyes via One-Pot Tricomponent Reaction: Exploring Photophysical Properties, Tyrosinase Inhibition, and Molecular Docking
Przemysław Krawczyk,
Beata Jędrzejewska,
Joanna Cytarska,
Klaudia Seklecka,
Krzysztof Z. Łączkowski
Affiliations
Przemysław Krawczyk
Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
Beata Jędrzejewska
Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Joanna Cytarska
Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
Klaudia Seklecka
Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
Krzysztof Z. Łączkowski
Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
Carbazole is an aromatic heterocyclic organic compound consisting of two fused benzene rings and a pyrrole ring and is a very valuable building structure for the design of many compounds for use in various fields of chemistry and medicine. This study presents three new carbazole-based thiazole derivatives that differ in the presence of a different halogen atom: chlorine, bromine, and fluorine. Experimental studies and quantum-chemical simulations show the effect of changing a halogen atom on the physicochemical, biological, and linear and nonlinear optical properties. We have also found that carbazoles C-Cl, C-Br, and C-F exhibit high tyrosinase inhibitory activity, with IC50 values in the range of 68–105 µM with mixed mechanism of action. Finally, molecular docking to the active site of Concanavalin A (ConA) and bioavailability for all compounds were evaluated.