Frontiers in Ecology and Evolution (Jul 2017)
Rain, Sun, Soil, and Sweat: A Consideration of Population Limits on Rapa Nui (Easter Island) before European Contact
Abstract
The incongruity between the small and apparently impoverished Rapa Nui population that early European travelers encountered and the magnificence of its numerous and massive stone statues has fed a deep fascination with the island. Ethnographic and archaeological evidence suggest that the indigenous population was previously greater than the estimated 1,500–3,000 individuals observed by visitors in the eighteenth century. Our goal was to determine the maximum population that might have lived on the island by estimating its agricultural productivity in the time before European contact. To determine the agricultural potential of the island we sampled soils and established six weather stations in diverse contexts and recorded data over a 2-year period. We find that the island is wetter on average than previously believed. We also find that rainfall and temperature respond linearly to elevation, but a spatial model of precipitation requires correction for a rain shadow effect. We adapted to Rapa Nui an island-wide spatial model designed to identify agriculturally viable zones elsewhere in Polynesia. Based on functions relating climate and substrate age to measurements of soil base saturation, we identified 3,134 ha that were suitable for traditional dryland sweet potato cultivation, or about 19% of the 164 km2 island. We used a nutrient-cycling model to estimate yields. Modeled yields are highly sensitive to nitrogen (N) inputs and reliable estimates of these rates are unavailable, requiring us to bracket the rate of N inputs. In the case of low N availability, yields under continuous cultivation were very small, averaging 1.5 t/ha of wet sweet potato tuber. When the N fixation rate was quadrupled sustainable yields increased to 5.1 t/ha. In each N scenario we used a model of food-limited demography to examine the consequences of altering agricultural practices, the labor supply, the ability of the population to control its fertility, and the presence or absence of surplus production to support social inequalities. In the low-N case viable populations average approximately 3,500 individuals across all parameter combinations, vs. 17,500 in the high-N case, although sustainable populations in excess of 25,000 were possible under some assumptions.
Keywords